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In the first part two schemes of flow about bodies by jets of finite width are considered. 

The fluid is assumed to be ideal. Primary attention is given to the plane case, but the 

possibility of considering three-dimensional formulations is also indicated, Relying on the 

described schemes and also taking viscosity into account in the qualitative manner, we 

present, in the second part, an explanation of the two following phenomena. 
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A small light ball (made of cork or a ping-pong ball), 

located in a thin jet (of air or water directed vertically 

upwards), can be held stably in this jet. This phenomenon 

has been known for a long time, and certain toys are based 

on it. 
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Let us imagine a circular cylinder (of the length 

several times greater than its diameter) which is able 

to rotate about its own axis almost without friction. 

Let us place the cylinder so that its axis is horizontal, 

and let us direct a jet of air or water on the cylinder. 

We assume that the axis of the jet (at the moment of 

formation) is horizontal and passes below the axis of 

FIG. 1 the cylinder. If the diameter of the jet is small in com- 

parison to the diameter of the cylinder, then the rotation 

of the cylinder occurs in the naturally expected direction - the velocity of the lower part 

of the cylinder will have the same direction as that of the velocity of the jet. However, 

it has been shown that over a definite range of jet thicknesses and of displacements of the 

jet axis downwards from the cylinder axis, the lower part of the cylinder will acquire a 

velocity in the opposite direction. 

This effect was first discovered by M.A. Gol’shtik, and who also determined experi- 

mentally the moments of the flow forces acting on the cylinder. 
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I. Let us begin with some formulations of problems of the motion of an ideal fluid. 

A body A (finite or infinite, figure l), which is bounded by a line r located to the 

right of the y-axis, is given. It is required to determine the fluid flow which satisfies the 

following conditions. 

lo. At 5 - - 00 the desired motion becomes the translational motion of a jet 

1 ~1 \c h parallel to the x-axis , the velocity of which is equal to unity. 

2’. On the free surface the velocity is constant, i.e. (in view of lo) the velocity is 

equal to unity. 

3’. The motion outside the body A is a potential one, and without singularities. 

Let us investigate the stability and existence of the solution. Let us consider the 

case in which r is given by the equation 

x = z (Y), r (Y) > 0 

where x (y) is a single-valued, twice-differentiable function. 

We note that for the boundary condition V = 1 on the free surface the solution of the 

problem is unstable ; namely, flows can be constructed with arbitrarily large deviations 

on the free surface 1 V - 1 1 < E (E is arbitrarily small). 

Indeed, let the lines y = y1 (x) and y = yI (x) for r < - 1 be the boundaries of the 

desired flow. 

Let US consider a flow with the velocity equal to 1 at x = - 00, bounded by the lines 

y, = y, (z) and Y2 = Y2 (x> for 

/ z - 2n 1 > n and by the lines 

It is not difficult to see that, for suf- 

ficiently large n, the constructed flow will 

FIG. 2 satisfy the condition V = 1 on the boundary 

with arbitrary accuracy while its boundary will 

differ by an arbitrary amount from the boundary of the exact solution. 

Stability will be achieved if tbe solution is sought in a class of domains, which for 

z < - A satisfy the condition 

Y&)fhl<~@Y, (4 -hl<BeX(B = const) 
Here y= Yr (x), and Y = Y2 (z) are the boundaries of the jet. 
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We shall indicate a way to construct the solution. The complex potential of the 

desired flow tu = f fz) wit1 obviously satisfy the conformal transformation of the region of 

flow onto the region A, obtained from the strip (~1 < h by discarding the ray 

In addition,free boundary of the fIow (figure 2f must correspond to the boundary of the 

boundary of the strip and the ray (1) must correspond to the line r. 

Free boundaries rr and r, must be chosen so that on r‘r and r, 

I f’ (4 I = 1 

Let z = cp (w) b e an inverse function off. The problem under consideration is then 

reduced to the following. A function 

F (w) = log cp’ (w) = a (u, v) -I- ib (u, u) 

must be determined in the region A so, that the following conditions are satisfied. 

On the straight lines D = + h the function 

a (U, 27) = a (U, -& h) = t 

On the ray D = vu, II > 0 the function b (u, v,,) should be defined in such a way, 

that the slope of the tangent of r at the point which corresponds to the point U, U) fJ 

of the ray, is equal to b (it, ~0). 

The quantity b (u, Q) can be given ‘in an arbitrary manner’ as a function of a; 

then, having solved the mixed boundary value problem, we can obtain classes of motion 

for various r. 
Existence and uniqueness theorems can be obtained by the variational method. The 

method of successive approximations will be effective here: with the lower free boundary 

fixed we can choose the upper one, then, with the upper boundary fixed, a new lower one 

can be selected, etc. 

The above-mentioned arguments can be extended also to the case in which A is of 

finite size. In contrast to the case examined previously the solution of the problem will 

not be uniquely determined defining the body and the jet at x + - 00. This approach will 

yield a set of solutions which depend on a single parameter. This parameter can be de- 

termined, for example, by assuming either the junction point of the jet behind the body or 

the velocity circulation about the body, known, 

Let us consider an approximate method of solving the problem for smafl A. Let r be 

a circle of unit radius with center on the y-axis. 

Under these conditions the adjacent circular arc in the vicinity of the point of 

division of the jet (figure 2) can be regarded to within small quantities of higher order as 

a straight line, tangent to r at the point of its intersection with the r-axis. Then, according 

to the momentum theorem, 



On some problems of fluid motion involving free surfaces 219 
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is easily obtained for the thicknesses hi 

and h, of the upper and lower jet respectively. 

ff s Here ~is the angle formed by the X- 

FIG. 3 axis and the circle r. 

In addition, from the geometry of the motion it follows that the flow in the vicinity 

of the point of recombination of the jet behind the body must be symmetric with respect 

to the flow in the zone of division of the jet: the flow will be symmetric with respect to 

some line which passes through the center of the circle. 

Relying on approximate formulas of conformal transformations of narrow strips and on 

the condition that the velocity must be constant on a free surface, it is not difficult to 

see,that outside the immediate vicinity of the points of division and recombination of the 

jets the free surfaces of the divided jet can be taken as circles with the corresponding 

radii 1 + A, and 1 + hl. 

The above-mentioned approximate solution to the problem can be directly applied to 

the case of a body bounded by an arbitrary, sufficiently smooth curve (the curvature must 

satisfy the Holder condition). The solution can be improved by taking into account the 

stream velocity in the thin strip in the transverse direction 

av 83 
an= as 

-=f( 

Here K is the average curvature of the boundaries of the strip. 

Using an approximate theory of fluid motion between two surfaces close to each other, 

it is possible to construct an approximate solution to the problem of the flow around a 

sphere (a closed surface) by a thin jet having a cylindrical form at the point n = - m. 

2. Let us consider the stability of a small ball in a vertical jet. We shall return to 

the plane problem of the flow around a circle of a thin jet. It is physically obvious that, 

if the axis of the jet passes through the center of the circle about which it flows, the 

point of reaombination of the jet will then be found on the same diameter as the point of 

division of the jet. A motion in which the point of recombination is displaced, which is 

possible within the scheme of an ideal fluid, will not be realized since in presence of even 

a small amount of viscosity, the velocity loss in the jet on the longer part will be greater 

than on the shorter-part and the jet with the greater velocity will push the jet with the 

lesser velocity back in the direction of the end of the diameter on which the point of 

division lies. 

The principle so fo~ulated can be extended also to the case in which the axis of 

the jet does not pass through the center of the circle. As in the symmetric case, we can 

assume in the first approximation that the point of recombination will be found on the 

same diameter as the point of division. If it is additionally considered that a thicker part 

of the jet over exactly the same length of run will lose leas velocity than a thinner part, 

we then come to the conclusion that the axis of the jet will be located somewhat above 

the end of the diameter on which the point of division of the jet lies. 
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Hence, using the concept of an ideal fluid, we can make the following conclusion: if 

the axis of the jet intersects a contour around which it flows, at the angle a, then after 

flowing around the contour the axis of the jet will form an angle greater than 2~ with the 

r-axis as n + + 00 % the jet will act on the circle with a force proportional to u in a dir- 

ection perpendicular to the diameter of the circle on which the point of division of the jet 

lies; the force will be directed toward the axis of the jet and a small ball will be stable 

in the jet. 

Since the thicker part of the jet occupies more than half of the circumference about 

which it flows, a second fact is implied: if the axis of the jet passes below the center of 

the circle, the circle will then rotate counter-clockwise. 

3. Let us consider some schemes of fluid motion when zones of vorticity are present in 

the flow region. We can assume that the simplest case of such motion is the motion of an 

ideal fluid along the z-axis under the following conditions. The motion is potential outside 

some region D, and a velocity Va is given at infinity. In the region D the flow has constant 

vorticity of intensity 0. 

We wish to determine the line of separation i.e. the boundary of D, in such a manner, 

that the flow velocity would vary continuously across the boundary. 

Such a motion exists and is unique. By virtue of the similarity principle the region D 

is arbitrarily large for a fixed velocity V. and a very small o , contracts similarly with 

increasing 0 and its diameter tends to zero as o + DQ. 

Let us now consider the same problem for the case in which the basic motion is that 

of a jet of finite width h. 

Let us assume that the desired solution of the problem is a region D whose area and 

diameter are finite as well as the curvature of its bonndary (the curvatnre not greater than 

a given constant). For these conditions, if h < ho, where ho is some constant, the solo- 

tion of the problem does not exist. 

Let us deduce a qualitative proof of this statement. We shall assume in addition that 

the boundary r of the region D is a convex line. Let us now assume that h is small in 

comparison with the diameter and with the magnitude of the inverse derivative of the cnrv- 

ature K of the boundary r. 

Let us consider a point A of the line r which is located on the x-axis and a point B 

on r at a distance a from the point A. Let a be small, but large in comparison with h 

a==:pb 

Then, at the point B the flow velocity in D will be small since the velocity of the flow 

at ,4 is equal to zero and the derivative of the velocity is finite. On the other hand, from 

the condition that a >> h it follows that the velocity of the potential flow at point B will be 

arbitrarily close to V,p 

By the same reasoning one can be convinced of the existence and non-existence (for 

sufficiently small h and finite sizes of D) of motions of the following form. A region 
occupied by the fluid consists of the regions D and A; region D is bounded by the segment 
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on of the z-axis, the segment ob of the y-axis and the line r; motion of the fluid in It is a 

motion with constant vorticity w ; region A is a strip bounded from below by the ray (0, ~1 

FIG. 4 FIG. 5 

of the z-axis, the ray (b, DD) of the y-axis and the line r and from above by the line y with 

asymptotes y t h and x = h; the motion in A is potential. On the boundary r the vslocities 

of both flows coincide. It would be of interest to obtain an estimate for h as a function of 

the dimensions of D for which a solution does or does not exist. 

4. We shall return to the problem of the flow of a jet around a cylinder. In the sym- 

metric flow of a jet of finite or infinite width around a cyIinder, vortices form behind the 

body in the zone of recombination of the jet. We shall describe the scheme in terms of an 

ideal fluid, which is closest to reality. Let the center of the circle in the flow (a section 

of the cylinder) be located at the origin of the coordinate system and let the velocity of 

the jet at infinity be parallel to the x-axis. Then, a part of the flow lying above the z-axis 

will consist of a flow with constant vorticity co in a region D bounded by an arc of the 

circle in the flow, a segment of the x-axis and an arc r which joins the end of the segment 

of the circle to the end of the segment of the z-axis ; outside D the flow is potential. If the 

width of the jet 2h is infinite or Iarge in comparison with the radius r of the circle in the 

flow, then, the dimension of D can be arbitrary and range from zero to some magnitude 

kr (k < 1). With decreasing h the constant k will also decrease and for small k (A <rl, the 

limiting dimension of D wiI1 be of the order of h (just as in the flow, described earlier, 

interior to a coordinate angle). 

If the fIuid is assumed to be viscous, then the steady-state motion described above 

does not exist ; the small vertical zone which is formed will grow and at some moment will 

separate from the body; from the considerations described above it can be inferred that for 

smaIler values of h the moment of separation of the vertical zone will correspond to smaller 

diameters of the vertical zone. 

It would be interesting to check experimentaIly, whether the separation will correspond 

to the maximum dimension of D in the simplest scheme of an ideal fluid. 

Let us return to the fundamental physical problem of the flow of a jet around a cyfinder 

when the width of the jet is commensurate with the dimensions of the body and the axis of 

the jet does not pass through the axis of the cylinder. In view of what has been said above, 

we shall take an irrotational flow as the basic motion. 
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Even for arbitrarily small viscosity, with the basic motion adopted at the initial 

moment, two vertical zones D, and D, , increasing with time, would begin to form in the 

zone of recombination of the jet. Both vortices will separate after reaching a critical size ; 
however, the separated vertical zone of the thin jet will be smaller than the corresponding 

zone of the thick jet. In the region of a thick jet (on the average) the segment of the cir- 

cumference along which flow reverse with respect to the motion of the jet occurs, will be 

larger than the corresponding segment in the region of a thin jet. Because of friction these 

reverse flows will introduce additional moments. Since the moment in the zone of a thick 

jet will be larger than in the zone of a thin one, the resulting moment will then rotate the 

cylinder in a direction opposite to the motion of a thick jet. 

Translated by R.D.C. 


